
~ Pergamon Int. J. Multiphase Flow Vol. 23, No. 3, pp, 493-501, 1997 
© 1997 Elsevier Science Ltd. All rights reserved 

Printed in Great Britain 
P I h  S0301-9322(96)00084-5 0301-9322/97 $17.00 + 0.00 

SIMPLIFIED TRANSIENT SIMULATION OF TWO PHASE 
FLOW USING QUASI-EQUILIBRIUM MOMENTUM 

BALANCES 

Y. TAITEL and D. BARNEA 
Department of Fluid Mechanics and Heat Transfer, Faculty of Engineering, Tel-Aviv University, 

Ramat-Aviv 69978, Israel 

(Received 5 September 1995; in revised form 5 November 1996) 

Abstract--Transient simulations of  two phase gas-liquid flow in pipes require considerable computational 
efforts. Available commercial Codes that were developed, or are being developed at the present, use either 
the two fluid model or the drift flux model. These models implement continuity and momentum transient 
equations. 

In many occasions, in particular for the oil and gas industry, the transient response is usually relatively 
slow. Thus, it is suggested here to use quasi equilibrium momentum equations for the liquid and the gas 
together with transient continuity equations. This procedure results in a simplified numerical algorithm 
which can be used as an efficient transient simulator. © 1997 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Transient simulations of gas-liquid flow in pipelines require major computing efforts leading 
usually to elaborate computer Codes. Recently several Codes were developed, supported by the 
oil industry. The first and the most well known Code is 'OLGA' that was developed in Norway 
(Bendiksen et al. 1987, 1991). Later the Code 'PLAC' (Black et al. 1990) was developed in 
England, 'TACITE' is now being developed in France (Fabre et al. 1989; Pauchon et al. 1993, 
1994). Shell Oil Company developed 'TRAFLOW'. All Codes are based on the two fluid model 
or the drift flux model in which transient formulation for the continuity and the momentum 
equations is used. 

The development of two-phase transient simulators was initiated by the nuclear industry which 
developed the basic strategy of the solution. In the nuclear industry fast transients are of major 
interest while in the oil and gas industry the interest is usually in relatively slow transients. Under 
these conditions one may consider the momentum equations to be in quasi-equilibrium leading to 
the use of simpler and less elaborate calculations. 

Taitel et al. (1989) proposed a simplified model in which the only transient equation was the 
liquid continuity equation. The gas continuity equation and the momentum equations for the liquid 
and the gas were assumed in a quasi-steady state. The approach seems to yield good results under 
conditions of fast gas flow rates (Minami 199 I; Minami and Shoham 1994). But, it lacks the ability 
to treat correctly the gas accumulation in the pipe. 

A recent review on the available numerical Codes that include a comparison of the performance 
of OLGA, PLAC and the aforementioned simplified method (Taitel et al. 1989) was reported by 
Vigneron et al. (1995). 

In this work a simplified numerical method that treats correctly the continuity equations of both 
the gas and the liquid is proposed. The momentum equations, however, for the liquid and the gas, 
are assumed to be in local quasi-equilibrium. The end result is a simplified numerical scheme which 
can easily implement steady state models for flow pattern transition and flow rate calculations. 

2. A N A L Y S I S  

The transient model proposed here is a simplified approach which can be used adequately for 
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the prediction of the transient behavior of  two-phase, gas-liquid flow, in pipes. The formulation 
is fully transient with respect to the continuity equations but it assumes local quasi equilibrium 
for the momentum equations for the liquid and the gas, that is, the existence of a force balance 
in each section of the pipe. This procedure takes advantage of the fact that the gas is compressible 
and its density is a function of the pressure whereas the liquid is considered incompressible or only 
slightly compressible. The pipe is subdivided into N sections of length Ax (see figure 1). The 
numerical calculations consider the liquid and the gas holdups and the pressure in each section 
to be known at time t (including the initial time) and proceed to calculate the flow variables at 
time t + At, The calculation of the next time step of the holdup and the pressure is done in two 
stages. In the first stage the liquid holdup is kept constant and the flow rates of the gas and the 
liquid in each section along with the flow pattern are calculated, based on the pressure and void 
fraction. Then the new values of  the gas mass, the gas density and the pressure in each section 
are calculated at time t + At. This phase of  the calculation is performed by an implicit scheme 
which guarantees stability of  the numerical procedure also for large time increments At. In the next 
stage the new liquid flow rate and the new liquid holdup are calculated, on the basis of the new 
pressure distribution. In this step a simple explicit procedure is applied. Note that abrupt variation 
with time can take place for the pressure and the pressure drop, owing to a change of the flow 
pattern. The holdup, however, varies only slowly with time as liquid has to move in or out to change 
the holdup in a section and this process takes time. 

A key element of the calculation is the correct modeling of the flow hydrodynamics which allows 
the calculation of the flow rates once the pressure and holdup variations along the pipe are known. 
The development of  such relations for separated flow and dispersed flow follows. 

2.1 .  S e p a r a t e d  f l o w  

In separated flow the liquid and the gas are considered to flow side by side. This flow pattern 
includes the stratified flow case where the liquid is at the bot tom of the pipe and the annular flow 
case where the liquid is spread around the pipe periphery. Assuming a quasi-equilibrium force 
balance on each section i yields (the subscript i is omitted for most variables), 

(Pi -- P~+,)As -- zGSc, A x  - z ,S ,  A x  - p6gAG(H~+ ~ -- Hi )  : 0 [11 

for the gas and 

( P , -  P~+ ~)AL -- ZLSLAx + z ,S ,  A x  --  PLgAL(H~+~ -- H, )  =- 0 [21 

for the liquid. 
P is pressure, A is the cross sectional area, H is the elevation level of  section i and p is the 

density. T is the shear stress and S is the perimeter over which z acts, L and G denote liquid and 
gas, respectively, and the subscript I denotes interface. The shear stresses can be correlated as 
follows, 

rG =/~P2w~; ~ =A p~U~lU~l =fp~(Uo- u~)luo- ud 
2 ; ~' 2 ' [3] 

where U is the axial average velocity a n d f i s  the friction factor. In stratified flow the gas is assumed 
to flow in the positive direction only (see [3]). The liquid, on the other hand can flow forward and 
backward. 

For the shear stresses between the liquid or the gas and the pipe surface, the friction factors, 
fL andfG can is approximated by the correlation f =  C R £  ° where C =- 0.046, n = 0.2 for turbulent 
flow, and C =  16, n =  1 for laminar flow. The Reynolds numbers were defined as 
R% = 4ULALpL/SLI~L for the liquid and R~o = 4Uc;Ac, p ~ / ( S ~  + S~)I~ for the gas. For the interfacial 
gas-liquid shear stress we adopted the relation,If = 0.005(1 + 7 5 A L I A )  (Wallis 1969). When ,¢i is 
larger than 0.05 then this value is used. 

Equations [1] and [2] are used to calculate the mass flow rate (and the velocity) of the gas and 
the liquid in each section for given void fraction and pressure difference P i -  P,+ ~. Equations [1] 
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and [2] are non linear equations for U~ and UL, thus some iteration is required to obtain the gas 
and the liquid flow rates. Note, however, that a good 'first guess' can be easily obtained for the 
case of constant friction factors and negligible liquid velocity (UG>> UL), for which case simple 
quadratic equations for UG and UL are obtained. This calculation is performed at the beginning 
of each time step, for given pressure variation and liquid holdup. For  simplicity annular flow is 
treated here the same way as stratified flow. 

2.2. Dispersed f l ow  

Slug flow and dispersed bubble flow, are treated here using the drift flux model. For this case 
the pressure drop is calculated by 

l 2 
( P , -  Pi+ I)A = -~fMpM UM~zDAx + ApMg(Hi+ l - H,) [4] 

where UM is the mixture velocity (UM = ULS + U~s). ea is the void fraction, eL is the liquid holdup 
and pM is the mixture density (pM = EGpG + ELpL)- The subscript S indicate superficial velocity. 

The gas velocity is correlated in the form 

UG = cu ,~  + u~. [5] 

Substituting [5] in [4] yields a quadratic equation for the gas velocity UG and the gas mass flow 
rate QG = Uc~pGAG. Once UG is known, UL and QL can be calculated from [5] noting that 
UM = EGUc + QUL. 

2.3. Solution algorithm 

Based on these ideas the solution procedure can be described as follows: 

(1) The procedure starts at time t where the liquid holdup EL, the pressure P and the flow pattern 
in each section of the pipe (see figure 1) are given. The inlet and outlet pressures, P~ and 
PN, and the liquid holdup at the entrance (the first section), ~L,, are given as boundary 
conditions. 

(2) The flow rates of  the gas QGi and of  the liquid QLi at each section i are calculated using [1] 
and [2] for separated flow and [4] and [5] for dispersed flow. This calculation is based on 
the force balance in each section (a quasi equilibrium momentum balance) and it depends 
on the flow pattern. Once the flow rates are calculated the flow pattern is computed (will 
be described later) to make sure that the flow pattern used is correct. If  not the calculation 
of  QGi and QL, is repeated with the new flow pattern. 

(3) In this step, an implicit solution of the pressure variation along the pipe for the next time 
interval is carried out. The liquid level is kept constant and only the gas is allowed to flow 
from section to section during this step of  the calculation. 

For  an efficient implicit solution of  the pressure a linear relation between the gas flow rate 
at time K + 1 and the pressure difference at this time (K + 1) is needed, namely a relation of the 
form, 

Q~? ' = Wff[Pf  +' - eih++l 1] ÷ Rff. [6] 

Note that [1]-[3] and [4]-[5] which are used to calculate the flow rates for given pressure distribution 
and holdup do not yield a linear relation between the flow rate and the pressure difference. 

Q i  

p i 1 i i+l 
i - P •  _ .  

• 1 1 ,  • " " " • 

I axJ 
Figure I. Geometry of the pipeline. 
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For the case of  stratified flow equation [I] can be recast in the format  of  [6] if W, x and 
R~ take the form 

1 
w5 = [7] 

(.fGSc + 6JlS,)AxQG /;S,6AxQL] 
2A3pG " ~  "3 

pog(Hi--  Hi+,) f S ,  pGfAxQ[ 
RY = 2Aap[ A[ , [8] 

cSa + 6J;S,)AxQ~ fIS, fAxQL]  
2A3p~ ~ J 

where 6 = 1 for U6 > UL and - 1 for U6 < UL. Note that all the variables in [7] and [8] are 
calculated at time K and thus are considered known. 

For  the case of  dispersed flow [4] takes a linear format if: 

Wi K _ 2AC2p~A~ 
UMpMnDAx] UG -- Ud] [9] 

and 

2ACpoAGg(Hi+ L -- H,) 
R~ = fMnDAx] UG -- Ud] + pGAGUd. [10] 

As mentioned, all the variables in [9] and [10] are also calculated at time K. The coefficients 
C and the drift velocity Ud depend on the flow pattern (slug flow or dispersed bubble flow) 
and on the inclination angle. In this work we used C = 1.2 and Ud = 0.25 m/s for slug flow 
and C = 1 and Ua = 0 for dispersed bubble flow. The implicit solution of the pressure 
distribution at time t + At involves the following relations: 

(a) The new gas flow rate is represented by the linear relation [6]. 
(b) The mass of  the gas at the new time step K + 1 is calculated by 

mgi + 1 K K + [ K + 1 
= mGi + At(Oo,i-t -- Q6,, ). 

(c) The new gas density is calculated by 

K + I  p~i+l mGi 
- A~ax" 

[ l l l  

[121 

(d) The new pressure P~+ t is calculated using the state equation. In this work we used the 
ideal gas equation of state, that is 

Pf+~ = pg,+ 'RT.  [13] 

(e) Substituting [11] and [12] in [13] yields 

K K + I  K + I  p K+, = y~ + z, (QG.,-, -- Qo., ), 

where 

[14] 

m~,.,RT 
Y~-  Ag, ax 

and 

RTAt  
z~-  A~,Ax" 
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(f) Substituting [6] in [14] yields a set of  equations: 

z K w  ~ P K + '  - z : w : l ' : 2 , '  = y :  + z ~ R L ,  - i , i i - i  ÷ (1  ÷ zKwiK_I ÷ zKwK)p K+I -- zKRi K. [ I S ]  

(4) 

Equation [15] is an implicit set of equations for the pressure variation at the new time 
step K +  1 for i =  2 . . .  N - 1 .  Note that Pr and PN are prescribed as boundary 
conditions. This set of  equations can be easily solved using the Thomas Algorithm. 

Based on the pressure profile at the new time step, the new gas flow rates are calculated 
using [6]. 
The new gas density is calculated using the state equation p~,~ ~ = P,~+J/RT.  (5) 

(6) The new 
constant. 

(7) The new 
(8) The new 

section i. Q~+l depends on Pi x+ ' ,  Q~i +' 
in step 2. 

(9) The new liquid mass in each section is 

liquid density is calculated. In this work it is assumed tnat the liquid density is 

gas mass is calculated using [11]. 
liquid mass flow rate QLX, + ' is calculated based on the specific flow pattern at 

, p X+~, pX+l, etc. This dependence is calculated as 

m~; + ' rn(; + At(Q(~ + ' K +, = - QLo,, ), [16] 

(10) 

Unlike the gas that is assumed to flow only in the downstream direction the liquid can flow 
'backward' when the pipe inclination angle is uphill. Consider a pipe element i adjacent to 
the elements i - 1 (on the left) and i + 1 (on the right). The liquid flow rate in each element 
can be positive (in the downflow direction) or negative. QL; (in absolute value) is always 
consider as QL .... The QLm is taken as the liquid flow rate of  the neighboring elements with 
the velocity towards section i. Note, for example, that for the 'normal'  case when the flow 
is positive then QLin  - -  QLout  is simply QLi - I  - -  QLi. 

The new liquid holdup is calculated 

eLK+Z__ m(g +' 
p~;+'AAx"  [17] 

(11) Change 'new' variables into 'old' and go back to step 1. 

2.4.  Flow pa t tern  

The most serious problem with the proposed method is the determination of  the flow pattern. 
For  the case of  steady flow, once the physical properties of the phases, the pipe diameter and the 
inclination angle are known the flow pattern is determined uniquely by the gas and the liquid flow 
rates. In the proposed simulation the flow rates are determined by the pressure and void 
distribution. One may find out that when stratified flow is assumed (for example) than the 
calculated pattern, which is based on the flow rates that were evaluated by the stratified assumption, 
will show transition to slug flow, and while in slug flow the flow rates obtained for the same pressure 
and void distributions will show transition to stratified flow. This problem could be solved in two 
ways. One way is to have a buffer zone for the transition criterion, that is, the transition from slug 
to annular (for example) will take place at a different location than the transition from annular 
to slug flow. Another way to solve this problem is to decide on a preferred flow pattern, that is, 
when we have oscillation in the flow pattern for the same holdup and pressure profile we should 
decide on a preferred flow pattern. In other words, when the solution for the flow pattern (and 
flow rates) is not unique we need to determine the flow pattern that will take place based on physical 
grounds. Both methods are utilized in this work. 

In addition one has to take into account that the calculation of  the transition boundaries should 
be relatively simple and quick so that the numerical solution is efficient and fast. 

In this work the following criteria for transition were used: 
The criterion used for the transition from separated flow to dispersed flow is a combination of  
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the Kelvin-Helmholtz transition criterion and a high liquid level, as proposed by Taitel and Dukler 
(1976). Thus, transition to dispersed flow (slug and bubbly flow) will take place when, 

t , , ) / ( p L -  p,;)g cos 
U,; > 1 -- D/~/  p<;S, + UL [18] 

and hL/D > 0.35, where hL is the liquid level. 
The transition from dispersed flow to separated flow is handled differently for the case of upward 

inclination and the case for horizontal and downward inclination. 
For upward inclination we considered the transition to separated flow on the basis of  the liquid 

holdup only. In this case a buffer zone is used, thus transition to separated flow will occur once 
the liquid holdup, ~L, is less than 0.2 (equivalent ht./D < 0.25) while the transition from annular 
flow to slug flow occurs at hL/D -- 0.35 (provided the interface is unstable). 

For horizontal and downward inclinations the Kelvin-Helmholtz criterion is used to determine 
the transition from slug to separated flow. This is done in the following way: For given liquid and 
gas flow rates an hypothetical quasi-equilibrium liquid level is calculated. On the basis of the flow 
rates and the calculated liquid level the K - H  criterion, [18] is used. If  stable to K - H  then the 
resulting flow pattern will be stratified flow, if unstable and the liquid holdup is less than 0.2, 
annular 'flow' will result in. Otherwise the flow will remain in slug or dispersed bubble flow. 

As mentioned, annular flow is treated as stratified flow [1]-[3] and dispersed bubble flow is treated 
as slug flow [4], [5]. The 'internal '  distinction between stratified flow and annular flow is based on 
the Kelvin-Helmholtz criterion and holdup. Thus 'separated'  flow with eL < 0.2 which is unstable 
to Kelvin-Helmholtz [18] is annular flow. Likewise the distinction in dispersed flow between slug 
flow and dispersed bubble flow is based of the liquid velocity. When the liquid velocity is higher 
than a critical velocity as described by Barnea (1986) dispersed bubble flow will result in, otherwise 
the flow will be in slug flow. 

As mentioned, when the solution for the flow pattern is not unique and the flow patterns 
oscillates (step 2 in the suggested algorithm) one has to make a decision as to the preferred flow 
pattern that will physically exist. If  for the same void fraction and pressure distribution one can 
obtain a stable and an unstable condition the unstable pattern is the dominant  one. Thus if one 
obtains oscillations between stratified and slug flow the preferred pattern is the slug flow pattern. 

It should be noted that the proposed criteria here are not a final recommendation for handling 
transient flow pattern transition. It is just a reasonable suggestion. Obviously, the numerical 
algorithm proposed here can accommodate  any other transient flow pattern criteria tbr transition. 

3. RESULTS AND DISCUSSION 

The main purpose of this article is to present the ideas and the framework for a simplified 
numerical algorithm which is based on quasi-equilibrium momentum equations and transient 
continuity equations. Many variations can be implemented here and the use of the particular 
models for the calculation of the flow rates and the transition criteria are open to different 
approaches. 

Nevertheless, in order to demonstrate the applicability of the method some examples of typical 
cases are presented in figures 2--4. In these figures the results for the liquid holdup and the pressure 
distributions are plotted for few selected times. 

In figure 2 a horizontal pipe is considered, 800 m long and 5 cm diameter. The initial liquid 
holdup, eL; is 0.2, the outlet pressure is 2 atm and the inlet pressure is 2.2 atm. The initial pressure 
distribution is assumed to be linear. The liquid holdup at the entrance increases linearly with time 
from 0.2 to 0.5 in 300 s. The pipe is subdivided into 40 sections and the time increment chosen 
is 1 s. Figure 2 shows how the liquid holdup and the pressure vary with time until a steady state 
is reached. As can be seen the liquid penetrates into the pipe to fill half of the pipe. The pressure 
is initially linear, but, once the liquid penetrates the pipe, the pressure drop at the entrance region 
of the high holdup is larger than in the lower holdup region downstream. This can be clearly seen 
by the pressure distribution for t = 300, 500 and 700 s. At the end, however, when a final steady 
state is reached, the pressure variation is again linear. Because the pressure difference in this case 



TWO PHASE FLOW USING QUASI -EQUILIBRIUM M O M E N T U M  BALANCES 499 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

t=2000 sec 

t=300 sec 

t=500 sec 
t=700 sec 

t=0 & 2000 see 

Stratified H o w  

t--300 sec t=500 sec 
t=700 see 

t=900 sec 

0 100 200 300 400 500 600 700 
x (m) 
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is low AP -- 0.2 arm the density of  the gas is almost constant and in this case the pressure variation 
is almost linear. Also note that since the pressure difference is low, the liquid and gas velocities 
remain sufficiently low and the flow pattern remains stratified since instability due to 
Kelvin-Helmholtz  is not reached in this process. 

Figure 3 is a similar case with the only exception that the inlet pressure is 5 atm. In this case 
the flow patterns along the pipe change with time. Since the pressure difference this time is high, 
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the liquid and gas flow velocities are sufficiently high to initiate the K - H  instability and therefore, 
right at time t = 0, the flow pattern is annular. Once the liquid level rises near the entrance, 
transition to slug flow occurs, and a lump of liquid is being pushed, creating a hump in the liquid 
holdup that is being continuously pushed to the pipe exit. The case of t = 150 s is interesting, as 
one can observe that near the entrance the flow pattern is slug flow, after the hump it is stratified 
flow and near the exit it is annular flow. Note that the pressure drop for the slug region is much 
larger than the pressure drop for stratified flow. As the slugs are created, liquid and gas velocities 
decrease and the flow downstream which was in annular flow becomes stratified flow. Finally, a 
steady state is reached with the whole pipe in slug flow. Note that unlike the previous case, the 
final pressure drop is not linear, this is due to the gas expansion in the downstream direction 
resulting in an increase of  the gas velocity and the pressure drop near the pipe exit. Also note the 
discontinuity in the holdup at the pipe entrance. This is due to the fact that at the entrance stratified 
flow is imposed. Once the flow pattern near the entrance is not stratified a jump to the correct 
holdup is shown in the next nearest section. 

The last example is shown in figure 4. The 800 m pipe is subdivided into four parts, each 200 m 
long. The first pipe is horizontal, the second is 2 ° inclined upwards, the third is 2 ° inclined 
downwards and the forth is horizontal again (as shown in figure l). Initially, the pipe is uniformly 
filled with liquid at a level of  hL/D = 0.25 (EL = 0.2) and the initial pressure profile is assumed to 
be linear. Outlet pressure is taken as 2 a tm and inlet pressure as 2.6 atm, both constant with time. 

The initial conditions are not steady state conditions and the simulation shows the transient 
behavior from the present conditions until steady state is reached. 

The initial flow pattern is of  stratified flow. At the beginning the liquid is depleted at the top 
(x = 400 m) and is accumulated at the bends, x = 200 and 600 m. Note that the liquid flows 
backwards in the uphill sections. At time t = 40 s the accumulation of the liquid at the elbow 
(x = 200) results in transition to slug flow and increase of  the pressure drop. At t = 200 s the flow 
pattern in the uphill sections is mostly slug flow. The high liquid holdup near the top results from 
the scooping of the liquid in the pipe, once transition to slug flow takes place. One can also observe 
at this time that the downward pipe is almost depleted of liquid which is accumulated in the 
horizontal end pipe. At time t = 500 s the upstream part is almost in steady state while the liquid 
is still being pushed to the outlet leaving liquid holdup at the region of the horizontal section low 
near the elbow (x = 600 m) and high near the exit. Finally, a steady state is reached as shown 
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at t = 2000 s. In this case the flow pattern is stratified except in the uphill section. The pressure 
distribution shows that the pressure gradient is very low in the down inclination section and in 
the horizontal sections and is high in the uphill section. Note that the liquid holdup at the inlet 
horizontal section is higher than at the exit horizontal section. This is because of the decrease of 
the pressure downstream and the increase of the gas velocity. Likewise the holdup in the uphill 
section, which is in slug flow, decreases with distance for the same reason. 

4. SUMMARY AND CONCLUSIONS 

A numerical algorithm that uses two transient continuity equations for the liquid and the gas 
and quasi equilibrium momentum equations is proposed in this work. 

The applicability of this approach is demonstrated by few examples that show typical transient 
behavior of two phase flow in a pipeline. 

One of the main objective of the present work has been the development of a relatively simple 
and user friendly, yet efficient algorithm for the simulation of the time dependent dynamics of two 
phase flow in pipes. This algorithm can serve as a basis for further development and more complex 
applications. 
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